o

»UK Patent Application «GB «2 301912 A

{43) Date of A Publication 18.12.1996

(21} Application No 9511730.5

(22) Date of Filing 09.06.1995

{51) INTCL®
GO&F 1/00 12/14

(62) UK CL (Edition O)

- {71} Applicant(s)
International Business Machines Corporation

{Incorporated in USA - New York)
Armonk, New York 10504, United States of America

(72) Inventor(s)
Jonathan Rhys Lewis

{74) Agent and/or Address for Service
IBM United Kingdom Limited
intellectual Property Department, Mail Point 110,
Hursley Park, WINCHESTER, Hampshire, S021 2JN,
United Kingdom

G4A AAP

(56) Documents Cited
GB2242295 A US5265221 A US 4621321 A

{58) Field of Search
* UK CL (Edition N} G4A AAP
INT CL® GOSF 1/00 12/14

(54) Security for computer system resources

(57) Provided is a scheme for implementing flexible control of subject authorizations (i.e. the asthorizations
which users or processes have) to perform operations in relation to computer resources. The methods,
computer systems and authorization facilities which are provided by the invention enhance the security
provisions of operating systems which have only very limited authorization facilities, by mapping the available
operating system permissions to specified resource authorities for each of a set of aspects or characteristics of
a computer system resource, to provide authorisation files, 130.

Thus, the standard operating system permissions (e.g. read, write, execute) can have different
meanings for different resource aspects, and an individual subject can have separate authorisation levels set
for the different resource aspects. The mappings between authorities and the available permissions may be

different for different types of resource.

TO (REATE RESOURCE

APPLICATION ISSUES COMMAND

- 100

QUEUE MANAGER
CREATES RESOURCE

- 110

AUTHORISATION CONTROL FACILITY
CREATES AUTHORISATION FILES

120

AUTHORISATION FACILITY 130
STORES AUTHORISATION FILES |~

AUTHORISATION FACILITY ASSIGNS 140
DEFAULT AUTHORISATIONS TO APPLICATION [~

FiG. 2

At least one drawing originally filed was informa! and the print reproduced here is taken from a later filed formal copy.

This print takes account of replacement documents submitted after the date of filing to enable the application to comply

with the formal requirements of the Patents Rules 1990.

BNSDOCID: <GB 2301912A__|_>

vV Cl610EC 99

1172

,9

APPLICATION APPLICATION JAPPLICATION

20

______________________________ ~4—170
=== COMMUNICATIONS
80—t OAM | MANAGER 60
OPERATING SYSTEM 130
HARDWARE |40
50
- .

INSDOCID: <GB______2301912A_|_>

BNSDOCID: <GB

2301912A__)_>

272

TO C(REATE RESOURCE

APPLICATION ISSUES COMMAND

100

l

QUEUE MANAGER
CREATES RESOURCE

~—110

l

AUTHORISATION CONTROL FACILITY
CREATES AUTHORISATION FILES

120

l

AUTHORISATION FACILITY

STORES AUTHORISATION FILES [130

l

AUTHORISATION FACILITY ASSIGNS
DEFAULT AUTHORISATIONS TO APPLICATION

140

FIG. 2

10

15

20

25

30

35

40

INSDOCID: <GB,

2301912

UKS-95-026

SECURITY FOR COMPUTER SYSTEM RESOURCES

Field of Invention

The present invention relates to security for computer system
resources, and more particularly to computer systems having flexible
subject-authorization control and to methods and computer system
components providing such subject-authorization flexibility in resource

security controls.

Background and Prior Art

Since many data processing applications involve highly confidential
and business critical information (for example national security
applications, fipancial applications), computer resource security is of
utmost importance. In addition to physical controls (such as building
security locks) and procedural controls (such as changing passwords) ,
logical controls such as access authorization control, authentication
{checking that a user is who they say they are) and cryptographic
techniques are important. Where large numbers of user terminals are
interconnected in a distributed processing network, with storage devices
and data files stored throughout the network commonly being accessible
from a plurality of terminalé, the provision of effective security is a

significant technical problem.

Modern computers are sold with operating system software installed
therein for controlling the execution of programs and providing basic
services such as resource allocation, scheduling, input and output
control, and data management. A *"resource" may be any facility or element
of a computing system or operating system required by a task (for example
storage, input/output devices, processing units, printers, data sets,
files, or programs). Many operating systems, such as IBM’s MVS/ESA and
0S/400 operating systems, additionally provide comprehensive facilities
for defining and managing system security (e.g. MVS/ESA has the RACF
facility). (IBM, MVS/ESA, 05/400 and RACF are trademarks of International
Business Machines Corporation). In particular, such operating systems
provide facilities for defining the access authorizations which
particular subjects have in relation to specific system resources.
Subjects are the active components in a network, such as processes, users
or groups of users. The subjects are said to be authorised to perform

certein operations, or to have particular "capabilities" or "permissions*

2301912A_|_>

10

15

20

25

30

35

40

BNSDOCID: <GB

UK9-95-026 2

with respect to a resource. As an example, & subject may be authorised to
update a specific file.

However, not all operating systems provide security facilities of
such sophistication, or even any security. In particular, the technical
problem of providing effective and comprehensive security is compounded
in open distributed systems since the "open" operating systems themselves
generally have only limited security facilities built into them, and
because of complexities which are not encountered with centralised
networks. For example, a security system for a distributed network must
have the ability for a user to authorize a caomputer to operate on the

user’'s behalf and only to do so while authorised.

An open distributed processing environment is described in
sSecurity Architecture for Open Distributed Systems®, S. Muftic et al,
wiley, 1993, as one in which computer systems with diverse applications,
resources, users, and locations exchange and process various types of
data and interact without any previous strict arrangements. An open
systems platform is the term given to systems developed for such an
environment comprising computer system hardware and the associated
operating system software which it runs. The UNIX operating system
developed by Unix System Laboratories and IBM's AIX operating system are
examples of open operating systems (AIX is a trademark of Intermational
Business Machines Corporation and UNIX is a trademark licensed through
X/Open Company Limited). Computer networks constructed within such an
open environment generally have less sophisticated security provision
than networks of computers running operating systems such as the 0S8/400
operating system. Typically, application programs which are run on open
systems platforms are restricted to very basic authorization mechanisms
if they are used at all. The increasing importance of open systens
solutions for commercial data processing and inter-enterprise computer
networking has increased the need for improved protection of users,

resources and assets in open computer networks.

For example, the file system authorization facilities provided by
the UNIX operating system comprise only the following three basic
permissions per file:

READ Subject can view the contents of a file;

WRITE subject can modify the contents of a file;

2301912A__|_>

10

15

20

25

30

35

40

INSDOCID: <GB

UKS-95-026 3

EXECUTE Subject can execute the file (the file being a program or

script).

Each permission is represented by a one bit field. The permissions
are defined to enable three categories of subject or user to be
distinguished, one set of bits being defined in each case. The first
category is the owner of the file, the second is any user in the group of
users associated with the file, and the final category is every other
user. A file may be set up, for example, as readable and writable by its

owner, readable by the group, and inaccessible to any other user.

The permissions on directories are similarly simple, differing

slightly from the permissions on files, as follows:

READ User can list the directory:
WRITE User can create or delete files in this directory:;
EXECUTE User can search the contents of the directory and make it the

current directory.

This level of granularity of authorization clearly has very little
flexibility and is not sufficient for many purposes - the authorization
access controls are not expressive enough to specify a comprehensive
security policy and the fact that the security facilities only apply to
files and directories is a severe limitation. For example, a company may
wish to transfer an existing commercial application program which deals
with sensitive information and which was written for one computer system
onto an open system platform (referred to as "porting" the application to
the open system) and yet to maintain the sophisticated security control
which was available on the first system. The authorization pernmissions of
the UNIX system are too coarse to permit this without additional

authorization control services.

The fact that the UNIX operating system does not provide an
effective mechanism for establishing a secure computer system has already
been noted in the prior art, for example in EP-A-0325777 which describes
a mechanism for an open distributed system for auditing information which
must be securely protected so that actions affecting security may be
traced to the responsible user. EP-A-0325777 thus relates mainly to
detection and indication of security problems, rather than to mechanisms

for prevention of computer resource misuse.

2301912A__|_>

10

15

20

25

30

35

40

BNSDOCID: <GB

UK9-95-026 4

One solution for systems with limited security provision is to rely
on security mechanisms being implemented by the applications which run on
the system, appropriate security measures being built into the
applications on an individual basis. However, there remain the problems
that such security measures tend to be of limited scope and applicability
and are usually incompatible in larger distributed systems. The drawbacks
of providing security in each application on an individual basis are
identified by Muftic et al in "Security Architecture for Open Distributed
Systems", Wiley, 1993, as follows:

1. The integration and functional completeness of the overall security

system in a broader operational environment may not be feasible;

2. It is difficult to analyze and evaluate the overall strength of

such a global security system;

3. Implementation, and therefore usage, of individual security
algorithms, mechanisms, and services may be duplicated, or interfere with

one another;

4. It is not easy to define a formal description of the global

security system, suitable for its rigorous analysis; and

S. It is very inconvenient to establish a cocmmon security architecture
and policy for integration and optimisation of individual security

services.

The above-mentioned book goes on to describe the authors’ views on
the desirable features, protocols, services and mechanisms of a
comprehensive security system architecture - i.e. setting out proposals
for an architecture rather than methods of implementing flexible resource
security using the existing security facilities of open distributed
systems.

Other prior art systems have sought to provide additional
preventative security mechanisms on top of the basic facilities of the
operating system. EP-A-0561569 discloses restricting user access to a
protected resource by requiring a call to a user monitor command,
specifying the protected resource as a parameter, the user monitor
command then checking that predetermined conditions are satisfied before

permitting access to the protected resource.

2301912A__|_>

10

15

20

25

30

35

40

NSDOCID: <GB,

UK9 -95-026 5

US-A-5173939 describes a basic access control model in which a
reference monitor examines requests for access to particular system
resources and decides whether to grant that access based on the resource,
who the reguest is from, the resource operation specified in the request,
and definitions of which users are listed as being authorised to perform
the requested operation. US-A-5173939 discloses attaching to particular
objects or resources an access cbntrol list (ACL) which is a list
specifying which users are authorised to perform a specific operation,
seeking to minimize the information which must be retained in the ACL by
defining a hierarchy of levels of authorization {i.e. if one entity isg
authorised to perform an operation then all entities having a higher
authorization level are also authorised and so need not be listed in the
ACL) . Despite the reduction of information stored in the ACL’'s, such a
system of storing authorization lists in association with system
resources has an undesirable maintenance overhead. The problem of the
inflexibility of security provision in open distributed systems is not

addressed.

US-4-5220604 discloses an authorization level hierarchy and a
method for excluding certain groups from resource access. US-A-5220604
describes the resources of the distributed computer System implementing
their own security policy, the resource itself determining the access
rights of a user when the user requests resource access and then the
resource deciding whether to allow or reject the reguest. This is
distinguished from the centrally managed resource access determinations
which are typical in non-distributed systems. Systems such as described
in US-A-5220604 cften rely on users being assigned user names, with
access to resources being on the basis of the access rights known to be
associated with a particular user name. This may be implemented by each
system resource including a listing of all users and their access rights
and user names, but the overhead of maintaining and updating all of the
access control lists is considerable if numerous system resources exist
and so this solution is often impractical. Alternatively, there may be a
central list accessible to all resources of the network, with a global
naming service providing user name resolution. In the invention of Us-a-
5220604, an access control list provided for each system resource lists
all possible access privileges and the users that have these Privileges.
wWhen a user reQuests access to a resource, the user’s name is compared to
the resource’s access control list; if the name is on the list then
access will be granted. US-A-5220604 provides no solution to the specific

2301912A__I_>

10

15

20

25

30

35

40

BNSDOCID: <GB,

UK9-95-026 6

problem of the inflexibility or non-granularity of the authorization

facilities which are available on open distributed systems.

Summary of Invention

The present invention makes use of the fact that a number of
distinct "aspects" or characteristics are typically associated with any
resource. A resource may be thought of as one instance of a particular
resource class, with the class of resource to which the instance belongs
being one "aspect®". Configuration information associated with the
particular resource instance may be a second aspect, and security
attributes concerned with the ability to grant and revoke authorization
for the resource instance may be a third aspect. Such different aspects
or characteristics of a resource will be exemplified and described
further below as part of the detailed description of an example
embodiment of the invention. The significant point to note is that there
are generally a number of separately identifiable aspects or

characteristics associated with a typical system resource.

The present invention provides a method of implementing resource
access authorization control in a computer system, the method comprising:
for computer resources which are to be protected, identifying a set of
resource aspects (e.g. resource class and resource data), particular
instances of which are characteristic of a particular computer resource;
defining resource authorities which subjects may have for each of said
resource aspects, and storing said authorities in association with said
resources; and defining subject authorizations for resource access in
accordance with said defined resource authorities for said resource
aspects, such that the subject authorizations are defined at the level of

granularity of resource aspects.

In this context, the word "subject” may refer to a user or group of
users of the computer resources, to an application program, or to another
active entity of a computer network by or from which a resource operation
may be requested. Authorities are the access rights which subjects have.
The combination of an authority which a subject has and the relevant
resource aspect to which the authority applies may be referred to as a
»capability" of the subject.

The present invention preferably provides a flexible method of

implementing resource access authorization control for computer resource

2301912A_ | >

10

15

20

25

30

35

40

NSDOCID: <GB,

2;

UKS9-95-026 7

security for operating systems in which a set of operating system
permissions are defined for use in the authorization of subjects to
perform operations in relation to specific resources, the method
comprising: creating a set of files including a set of definitions of
correspondence between the defined operating system permissions and
specified resource authorities for each of a plurality of different
aspects of a resource; storing said created files for association with a
resource to be protected; setting subjects’ authorizations in relation to
said resource in terms of the defined operating system permissions,
thereby defining the authorities which said éubjects have in relation to

the different resource aspects.

When a subject attempts to perform an operation in relation to a
protected resource, subject authorization testing in accordance with an
embodiment of the present invention includes the step of comparing the
operating system permissions of the subject with said set of definitions
of correspondence within the created files to determine whether the
subject is authorised to perform the operation in relation to the
protected resource. Such testing may use the standard methods which are
provided by many open systems operating systems to enable applications to
test the access rights which users have against files (i.e. using the
standard methods to confirm user permissions and then comparing those
permissions with the definitions of correspondence within the

authorization files).

The files which are created according to the invention for use in
setting and testing subject authorizations are preferably oberacing
systems files and are referred to hereafter as authorization files or

operating systems files.

The steps of Creating, storing and setting may be performed by an
authorization control service software component of a computer system.
This may be under the control of a systems programmer, but it is
preferred for authorisation files to be built'automatically when a
resource is created. The authorities for a particular resource type and
the rules for mapping authorities to operating system permissions are
predefined for the system to enable automated building of authorisation
files. It is also preferred to automatically assign default
authorisations to users when they create a resource. The default settings
for subjects’ authorisations may be definitions stored in administration

files of the authorisations for named subject groups.

301912A__|_>

10

15

20

25

30

35

40

BNSDOCID: <GB

UKS-95-026 8

The present invention also provides a computer resource access
authorization control facility for use with operating system software
having security facilities including a set of definitions of operating
system permissions for use En the authorization of subjects of system
resources to perform operations in relation to said resources, the
control facility including: means for creating a set of files including a
set of definitions of correspondence between said operating system
permissions and specified resource authorities for each of a plurality of
different aspects of a resource:; means for storing said created files in
association with a resource to be protected;'means for setting subjects’
authorizations in relation to specific resources using said operating
system permissions, thereby to set the authorities which said subjects
have in relation to the different resource aspects; and means, responsive
to a subject requirement for an operation to be performed, for comparing
the subject’s operating system permissions with the set of definitions of
correspondence within the created files, thereby to determine whether the

subject is authorised to perform the operatiomn.

The present invention thus recognises that each of a plurality of
different resource aspects may, for a particular instance of a resource,
be considered separately and may beneficially have independent access
authorities defined for each of them - i.e. the different aspects of a
resource may each justify a different set of authority definitions for
the access-authorization-controlled performance of operations on
resources. Also, the different aspects of a rescurce may justify
protection at a different level of granularity (e.g. some aspects being
controlled at the resource instance level and others at the resource
class level). The provision of different levels of granularity of access
control for the different aspects of a resource is made possible by the

present invention.

An important advantage of the invention is that it enables access
authorizations to be set for computer resources other than files and
directories. Computer systems and computer programs often reqﬁire
security to be provided for many objects or resources which they include
or process, in addition to files and directories. Because the authorities
for particular resource aspects can, according to this invention, be '
defined in accordance with actual security requirements for particular
resources, a resource security system of great flexibility is made

possible.

2301912A__) >

10

15

20

25

30

35

40

‘NSDOCID: <GB

UKS-95-026 9

The present invention preferably uses the available operating
system permissions, but increases the granularity and flexibility of the
available subject authorizations by relating operating system permissions
to specified resource authorities for the different aspects of a
resource. The use of the existing security facilities has the advantage
that these facilities have already been designed to deal with large
numbers of objects (e.g. files) and have proven good performance. The
invention enables authorization control to be at the granularity level of
individual resource aspects and thereby enables the provision of a much
more flexible and comprehensive authorization scheme for open distributed
systems than is possible in systems in which the resource is the smallest
entity in relation to which authorization controls are made available.
For example, the invention enables the pr0visipn of flexible access
authorization control using the basic three file permissions READ, WRITE
and EXECUTE of the UNIX operating system.

The invention also enables the use of existing system interfaces,
which reduces development cost and avoids system integration problems as
compared with security mechanisms which necessitate the definition of new
interfaces. Provision of a complex security manager component in each
computer system of the network is not essential. A further advantage is
that the invention does not require proliferation of security related
data, which would itself need additional protection, as existing security

data may be used.

Each resource to be protected is thus preferably associated with a
set of operating system files (known as authorization files) which
preferably contain no executable files or data other than the definitions
of correspondences between the operating system permissions wh;ch
particular subjects may have and the resource authorities of different
resource aspects. Operating system services are used against the
authorization files to set and to test the authorizations of particular
subjects. The basic permissions of the operating system may be limited
to, for example, three independent permissions per file and yet a
flexible authorization scheme can be implemented if each resource has a
number of authorization files associated with it in accordance with the
present invention. The invention recognises the desirability of enabling
each aspect of a resource to have a level of protection which is
independent of the other aspects, and by enabling independent levels of
security for different aspects the invention provides a flexible scheme

for implementing resource security.

2301912A__|_>

10

15

20

25

30

35

40

BNSDOCID: <GB

UK9-95-026 10

It is thus preferred that the present invention uses defined
mappings between operating system permissions and resource authorities in
the setting and testing of the operating system permissions that
particular subjects have, providing a f£lexible scheme for defining
authorizations and a method of authorization testing for use when
subjects attempt to perform tasks in relation to protected resources,
authorization flexibility being achieved even if the operating system
permissions themselves are of very limited granularity and applicability.
The mappings (i.e. the redefined "meanings®" of the operating system
permissions) can be varied to provide differént styles of access control

and to cater for different reqguirements.

The authorization files which define the authorities and the
correspondence with permissions for the aspects of a particular resource
may be stored either with the resources to which they apply or may be
stored centrally (i.e. separate from the resources), but in either case
the authorisation f£iles are preferably held by the computer system entity
which is respecnsible for this aspect of resource security, organised
within a directory tree to enable easy access using a naming convention
such as is known in the art. A subject’'s permissions or "capabilities”
are preferably held in system administration files which are accessed by

test processes when resource access is requested.

In a preferred embodiment of the invention, file permissions are
used to represent resource authorities and directory permissions are used
to protect the authorization files which store the mappings between
authorities and operating system permissions. A preferred embodiment uses
a single authorisation file to represent each aspect of a resource for
security purposes.

The invention also provides a computer system including computer
resource access authorisation control means defining, for computer
resources for which access authorisation control is required, permissions
which subjects may be given to perform operations in relation to said
resocurces, said means for defining being adapted to define permissions
for each of a plurality of different aspects of said resources,
particular instances of said resource aspects being characteristic of a
particular computer resource.

The invention also provides a computer system having operating

system software installed therein, which operating system software’s

2301912A_ |_>

10

15

20

25

30

35

40

3NSDOCID: <GB,

UK9-95-026 11

security provision includes a set of definitions of operating system
permissions for use in the authorization of subjects of system resources
to perform operations in relation to said resources, the system
including: means for Creating a set of operating system files including a
set of definitions of correspondence between saigd operating system
permissions and specified resource authorities for each of a Plurality of
different aspects of a resource; means for stbring said operating system
files in association with a resource to be protected: means for setting
subjects’ authorizations in relation to specific resources using said
operating system permissions, thereby to set'the aucthorities which said
subjects have in relation to the different resource aspects; and means,
Tresponsive to a subject requirement for an operation to be performed, for
comparing the subject‘s operating system permissions with the set of
definitions of correspondence within the operating system files, thereby
to determine whether the subject is authorised to perform the operation.

If the comparison shows the subject to be authorised, the operation

is performed.

The present invention is preferably implemented in application-
supporting communications software (often referred to as "middleware"),
which can be installed at each node of a distributed network, so as to
provide flexibility of authorization on top of the basic operating system
facilities without requiring application programs themselves to implement

their own security control measures.

Description of preferred embodiments

The present invention will now be described in more detail, by way

of examples, with reference to the accompanying drawings in which:

Figure 1 is a schematic Tepresentation of the layered structure of

a8 data processing system; and

Figure 2 is an overview representation of the sequence of steps of
a method of implementing authorisation control according to an embodiment

of the invention.

Figure 1 is a simplified schematic representation of a computer
system showing the layered structure of the major system components. A
typical distributed data processing network comprises a Plurality of

2301912A__|_>

10

15

20

25

30

35

40

BNSDOCID: <GB

UK9-95-026 12

disparate computer systems 10, which may range from desktop systems to
mainframe systems, each of which has particular application programs 20
running on the system which applications are adapted to the particular
operating system 30 of the system on which they run. To enable the
applications to exchange information across the network links 50, the
applications themselves often have facilities enabling them to work with
applications which run on a different selected operating system and
hardware platform. That is, code is written into an application program,
which converts or interprets information exchanges sent to/from the
application from a first format to a second format. A recent advance on
this requirement to re-code individual applications to enable them to
communicate with applications on different platforms is the development
of application-enabling communications managers 60, which shield the
applications from the complexities of the network and manage the work of
providing secure inter-program communications. Such application support

is provided by IBM's MQSeries commercial messaging software products.

IBM’'s MQSeries commercial messaging products are described in the
following publications which are available from IBM: "MQSeries Message
Queue Interface Technical Reference® (IBM document number SC33-0850-01)
and "IBM Messaging and Queuing Series - An Introduction to Messaging and
Queuing" (IBM document number GC33-0850-00), which are incorporated
herein by reference. The MQSeries products provide facilities for the
management of asynchronous communication using message queues,'allowing
application programs to communicate with each other simply by "putting"
messages onto outgoing message qQueues to send them and "getting® messages
from their incoming Queuves when they wish to receive them. The
applications send and receive messages (having "connected" themselves to
specific qQueue managers and "opened" a message channel) using commands
defined as part of an application programming interface (API) 70 on the
queue manager. All of the activity associated with reliable message
communication other than the issuing of the relevant API commands to
"put® and "get" a message is carried ocut by the MQSeries products - this
activity includes maintaining message qQueues, maintaining the
relationships between programs and Queues, handling network restarts, and
moving messages around the network. To provide this communication
management, there is an MQSeries Queue manager installed on each

processor of the network.

The benefits of the application support provided by these messaging

and gueuing products includes the removal of constraints on application

2301912A__|_>

10

15

20

25

30

35

40

NSDOCID: <GB

UK9-95-026 13

Structure and on program-to-program relationships, the avoidance of
programmers having to write communication code, ease of code reuse, the
enabling of efficient time-independent scheduling of resources, reduced

vulnerability to network failures and assured message delivery.

The resources that a gueue manager owns and manages are protected
from unauthorised access, to avoid loss or disclosure of the information
transferred under the queue managers’ control. The following must all be

protected from unauthorised access or change by any unauthorised user or

process:
- Connections toO a gQueue manager;

* Access to MQSeries objects such as queues, channels, and processes;
- Commands for gueue manager administration:

* Access to MQSeries messages; and

- Context information associated with messages.

IBM’s "middleware" application-enabling queue manager product for
the AIX operating system platform (which product is known as IEM MQSeries
for AIX, and is commercially available from IBM) controls access to queue
manager resources through an authorization service installable component
known as the Object Authority Manager (OaM) 80. This component and other
security provision are described in "MQSeries for AIX - System Management
Guide" (IBM document SC33-1373-01) and in "MQSeries Programmable System
Management" (IBM document SC33-1482-01), which documents are incorporated

herein by reference.

The present invention is implementable as an alternative to the
currently available OAM component of the product IBM MQSeries for aIX.
The Object Authority Manager (OAM) manages users’ authorisation to
manipulate MQSeries objects, such as queues, process definitions, and
channels. The OAM provides a command interface through which to grant or
revoke access authority to an object for a specific group of users. The
OAM makes the decision Of whether to allow access to a particular

resource.

IBM’s AIX operating system incorporates the common security
features found in most open systems operating systems, including file
security for read, write and execute authority at the user and group
level, and limitations on certain system management functions to specific

System group level authority.

2301912A__|_>

UK9-95-026 14

The OAM exploits the security features of the underlying AIX
operating system, using AIX user and group ID‘'s. Users can access gqueue
manager objects only if they have the required authority. Managing access
permissions to resources is based on user groups (i.e. groups of

5 principals). A user can belong to one or more AIX groups. The 0OaAM
maintains authorizations at the level of groups rather than individual
users. The mapping of users to group names is carried out within the OAM
and operations are carried out at the group level. The authorizations
that a user has are the combination of the authorizations of all the

10 groups of which it is a member (i.e. its grohp set) .

The OAM allows control of the access to MQSeries objects through
the Message Queue Interface (MQI), which is a high level application
programming interface of the MQSeries products. When an application

15 program attempts to access an object, the OAM checks if the user making
the request has authorization for the operation being requested. In
particular, this entails protecting queues and messages on the queues
from unauthorised access. Permission to use queue manager administration
commands (e.g. to create a queue), control commands (e.g. in creating a

20 queue manager Or starting a command server), or PCF commands is also
controlled.

Implementations of the methods and the authorisation service
according to the present invention will now be described in detail.
25
As noted above, computing resources may be considered as instances
of specific resource classes. Also noted above is the fact that a number
of different aspects or characteristics are'generally associated with a
resource, with the different aspects possibly requiring different levels
30 of security protection. For example, the resource may be a communications
link between two machines and the class to which the link belongs may
depend on the particular communications protocol (SNA, TCP/IP, NetBIOS,
etc) . The class defines the attribute types associated with links of a
particular type, but the instances of those attributes are associated
35 with the objects themselves. In addition, there may be data associated
with particular objects - which in the case of the communications link
example may be data waiting to be transmitted over the link. Also, there
is a security aspect which relates to the ability of subjects to grant or
revoke authorization to the resource for other subjects (i.e. the
40 authority to modify others‘’ authorizations, or to read others’

authorizations, rather than relating to access to the resource itself).

BNSDOCID: <GB, 2301912A__|_>

10

15

20

25

30

3NSDOCID: <GB

UR9-95-026 15

Thus, a typical system resource has the following four different

aspects:

Resource Class - The class of resource to which the resource

instance belongs:;

Resource Attributes - Data, typically configuration information,
associated with the particular resource instance:

Attributes concerned with the ability to grant and

Resource Security
revoke authorization for the object instance:

Resource Data - Data associated with the object instance.

Although it will be understood by a person skilled in the art that
various alternative or additional resource aspects may be defined or
identified, the above described aspects are utilised in an embodiment of
the present invention which provides flexible resource security as

described below.
Mappin erating System Permissions to Resource Authorities

Operating system permissions are mapped to resource authorities for
individual aspects of a system resource. The possible permissions
associated with each aspect of a resource are represented by a single
operating system file. The following Table 1 defines the correspondence
between operating system file permissions and resource authorities for

the different resource aspects:

2301912A__|_>

10

15

20

25

30

BNSDOCID: <GB,

UKS-95-026 16

TABLE 1. RESOURCE AUTHORISATION ASSOCIATED WITH
OPERATING SYSTEM PERMISSIONS

- 1|
OPERATING RESOURCE RESOURCE RESOURCE
SYSTEM DATA ATTRIBUTES SECURITY CLASS

PERMISSION

READ resource resource authoris- resource
data can be attributes ations for instances in
viewed can be other users the class can

viewed can be be listed
viewed :

WRITE resource resource authoris- new resource
data can be | attributes ations, instances can
mocdified can be other than be added to

modified security class
authoris-

ations, for
other users

can be
modified
EXECUTE resource unused security resource -
data can be authoris- instances can
deleted ations can be removed
be modified from the
for other class
users
e ———

In essence, read permission allows viewing, write permission allows

updating, and execute permission allows deletion.

In this example, each resource class requires a single file to
maintain the permissions in the Resource Class column, and each resource
instance requires three files to maintain the other permissions. The
following general directory structure is used to support storage of

authorisation files according to the scheme:

..../<resource_class>/class
..../<resource_class>/<resource_name>/data
..../<resource_class>/<resource_name>/attributes

..../<resource_class>/<resource_name>/security

where <resource_class> is the name of the class of resource to which the
resource belongs, and <resource_name> is the name of the specific
instance of the resource to which the authorisation files belong. (The
above are partial filenames intended to show the directory structure only
- hence the "...." representation). The permissions on the file called
nclass" correspond to the Resource Class column in the table. The
permissions on the file called "data®" correspond to the Resource Data
column in the table. The permissions on the file called ®"attributes"®

2301912A__|_>

10

15

20

25

30

35

40

UK9-95-026 17

correspond to the Resource Attributes column in the table. The
permissions on the file called "security®” correspond to the Resource
Security column in the table. This use of the class of the resource and
its name as part of the directory name for the authorisation files is
useful in that it makes the names of the authorisation files computable

from the class and type of the resource.

It is an important benefit if the names of the files used to hold
authorisations for a particular resource are derivable from the resource
itself, as above, but the choice of directory structures used to hold

authorisation files is essentially unrestricted.

As a specific example of the operation of the authorization scheme,
we can consider the case where the resource instance is a SNa
communication link. Assume that the 1ink is to a host computer called

HOST1. The authorization files involved are as follows:

.-../SNAlink/class
+-../SNAlink/HOST1/data
-+../SNAlink/HOSTl/attributes
--../SNAlink/HOST1/security

A user wishing to administer the link needs both view and update
authorization for the attributes of the link, which is identified as READ
and WRITE access to the authorization file/SNAlink/HOST1/attributes.

A user needing to use the link to read data from the host would

need READ access to --../SNAlink/HOST1/data.

A user needing to grant other users the ability to use or
administer the link would need READ and WRITE authority to
--../SNAlink/HOSTl1/security.

& user needing to enable other users grant and revoke access would
need EXECUTE authority to the file ---./SNAlink/HOST1/security.

The above is merely one éxample - the resources for which subject
authorizations are set or tested using this scheme can be of any type
(e.g. each of the resocurces listed previously as resources for which a

queue manager program has responsibility).

NSDOCID: <GB 2301912A__I_>

10

15

20

25

30

35

40

BNSDOCID: <GB

UK9-95-026 18

The above description uses incomplete filenames for simplicity. In
an embodiment of the invention in which the auvthorisation files for
resources are kept with the resources to which they apply, the following
naming convention has been used for the directory tree which supports
authorisation file storage:

<product_root>/authorization/<resource_class>/<resource_name>

where <product_root> is a directory suitable as the root for the
particular product; "authorisation" is a literal indication of the branch
for authorisation information: and <resource_class> and <resource_name>

have the same meanings as given previously.

Using this structure, with a top-level directory appropriate to
operating systems such as IBM’'s AIX operating system, the files

associated with the SNA link example are:

/var/SNaA/authorisation/SNAalink/HOST1l/data
/var/SNa/authorisation/SNAlink/HOST1/attributes
/var/SNa/authorisation/SNAlink/HOST1l/security

Use of the "/varn file system to hold data files related to
installed products is well known in the art and so needs no further
explanation. An alternative to this approach of storing authorisation

files with the relevant resources will be described later.

It will be recognised by a person skilled in the art that, although
the above-described use of a single operating system file to represent
each aspect of a resource for security purposes achieves a reasonably
comprehensive provision of flexible resource security, the invention is
equally applicable to implementations with fewer operating system files
(for simpler security provision, such as where there is no requirement
for resource attribute access control at the resource instance level but
only at the resource class level) or with more files (for more flexible

resource security provision).

As is clear from the above description, improved subject-
authorization-granularity for open distributed systems is one aspect of
the security flexibility of the present invention. A second aspect of the
invention’s flexibility is the fact that minor modifications to the

specific embodiment described above (in which access to resource

2301912A__I_>

10

15

20

25

30

35

40

INSDOCID: <GB

UKS-95-026 19

attributes is controlled at the resource instance level) will permit
attribute access control at the resource class level. The present
invention is not limited in scope to the particular mappings described in
the above detailed description of an embodiment. Changes in the mappings
allow different styles of access control to be implemented to cater for
different security requirements, such that the invention is very
flexible.

Creation of Authorisation Files

Applications build authorisation files automatically when resources
are created, in accordance with predefined authorities for a selected set
of resource aspects for the resource type. A computer program product in
which the authorisation scheme is implemented holds files which define,
for each of a plurality of resource types relevant to the product, the
authorities relevant to particular resource aspects and the rules
specifying how these authorities are to be mapped to the available
operating system permissions. When a resource instance is created, these
configuration files are accessed to select the appropriate authorities
and mappings for the resource type, and to build authorisation files for
thét resource which contain this authority and mapping information. For
example, when a message channel is created by a qQueuve manager product,
the access authorisation files for the channel are created in accordance
with system-defined rules for message channel aspect authorities. Each
type of resource has a specific associated set of rules for authorisation

file creation.

Protecting the Authorization Files

Permissions on the directories containing files are not used to
represent resource authorizations, but rather are used to protect the
authorization files themselves. When a subject is given authorization to
a resource, this may inherently involve the subject getting update
authority to one or more authorization files. It is important that
nothing that the subject can do given that authority represents a
security or integrity exposure to the system. Therefore, directories are
used to protect the authorization files. Subjects are not given READ or
WRITE authority to the directories which contain the authorization files.
Consequently, they cannot directly create or delete authorization files.
They are given EXECUTE authority to the directories (this being necessary
or they would not have any access authority to the authorization files).

2301912A__|_>

UK9-95-026 20

Since subjects may be able to read data from or to write data to
the authorization files, the authorization files are not used to store -
any data. Each system is provided with means for periodically checking
that the authorization files remain empty of data, and to empty them if

S not.

A potential security exposure arises from subjects having EXECUTE
authority for authorization files. The problem and its solution will now
be described. If a subject has WRITE and EXECUTE authority to an

10 authorization file, then the subject could ih principle copy a script or
program into the file and then execute it. If that authorization file
were to be owned by a privileged subject ID, then the subject would be
able to execute the script or program with an authority which may be
greater than that to which he was eﬁtitled. Because the present invention

15 uses permissions to mean different things from the normal meaning defined
for the operating system, it is necessary to protect against a user
seeking to manipulate the authorisations of the scheme to obtain
unauthorised access to resources. This potential problem is solved by
authorization files never being owned by subject ID‘s with privilege

20 beyond that associated with the resource which they protect. An example
of a privileged ID in the UNIX environment is the subject ID name "root",
which identifies a subject who can operate outside of usual system
restrictions - so0 to avoid the aforementioned security exposure, the root
ID may not own an authorization file. an alternmative solution will be

25 mentioned later.

Establishing and Managing Subject Authorizations

Permissions on the authorization files can be managed directly by a
30 system administrator, using the standard open system platform security
commands, but this becomes increasingly difficult as the number of
authorisation files per object increases. Thus, the preferred
implementation of the invention uses an authorisation administration
application program to perform the necessary operations on behalf of an
35 administrator. Use is made of system level function calls which allow
application programs to manage file permissions. A simple management
application maps a requested authorisation to the particular file
permission bits involved. Users then work with resource names, user names
and authorities, leaving the application to derive the authorisation file
40 names and the permission bits (from the resource class and name), and to

apply the appropriate permissions automatically. Such an application is

BNSDOCID: <GB 2301912A__| >

10

15

20

25

30

35

40

INSDOCID: <GB

UK9-95-026 21

effectively an implementation of the relevant resource permission table

of mappings (such as is exemplified by Table 1 above).

To further save on unnecessary administration effort, a subject
which creates a resource instance is automatically given certain default
permissions by the administration applicatioen program. For example, an
owner subject may automatically get permission to modify resource
attributes; a Queue manager which creates a message channel definition
for message communication between application programs is given the
necessary authority to manage the channel. Ié is equally possible to
build the administration application such that the subject’s group
receive default permissions automatically when resources are created by a

subject within the group.

Since the administration application makes use of the programming
interfaces which are already provided by open systems platforms and which
already implement the necessary commands, the development of the
application is a simple matter for a person skilled in the art, and so
further description is unnecessary here. However, use of the sStandard
open system security commands will now be described for completeness.

The standard chmod command for changing permissions on UNTX files
can be used by systems administrators to set authorisations on files. For
example, an administrator setting up a new SNA link to a host machine may
wish to authorize one set of users to use the link and another set to
administer it. Two groups of users are created using standard commands
(such as mkgroup). An alternative is to edit the systems administration
files. Some open systems platforms provide menu driven mechanisms which
can be used for these operations. Suppose the two new groups are called
SNAadmin and SNAuser. The administrator needs READ and WRITE permissions
for the resource attributes for the new link, whereas users need READ,
WRITE and EXECUTE permissions for the resource data. The commands

required to establish these permissions for the groups concerned are:

chgrp SNaadmin /var/sNa/authorisation/SNAlink/HOST1/attributes
chgrp SNauser /var/SNA/authorisation/SNalink/HOST1/data

chmod 760 /var/SNA/authorisation/SNAlink/HOST1/attributes
chmod 770 /var/SNA/authorisation/SNAlink/HOST1/data

This example uses an authorisation file structure which keeps the

files with the resources, and which sets authorisations according to

2301912A_|_>

i0

15

20

25

30

35

40

BNSDOCID: <GB

UK9 -95-026 22

whether a subject is the resource owner, a member of the same subject

group as the owner, or outside of the group.

To clarify the meaning of the above commands (which are examples of
open operating system commands such as are known in the art), it may be
noted that open operating system permissions are represented in the

commands by numerals, using the following representation:

Owner Group any other
r wx T W X r w X Permissions
111 110 000

7 6 0 Attributes
111 111 0 00O

7 7 0 Data

So, the latter example chmod command shown above gives the resource
owner READ (r), WRITE (w), and EXECUTE (x) permissions for the data
aspect of the resource; the other members of the owner’s subject group
are given the same access permissions to the data; and any other subject

is given no permission.

To add a new user and to give them authority to administer the link
simply requires adding group SNaadmin to their group list. Likewise,
adding SNAuser to a user’'s group list would allow them to use the link.

This example is simple because all users of the link have the same
authorisation. In this case, a given file can have only one user and one
group associated with it - more sophisticated schemes are implemented by

using more authorisation files.

Authorization files are backed up regularly by the system
responsible for the resource, to ensure that their permissions can be

recovered in the event of system failure.

Steps in the operation of an authorisation control facility
according to the invention will now be described by way of example, with
reference to Figure 2. System resources can be created in response to an
application program command. For example, an application may issue 100

the command MQOPEN via the MQI {(see earlier) to establish access to a

2301912A__|_>

10

15

20

25

30

35

40

NSDOCID: <GB,

UK9-95-026 23

message queue, which may cause an instance of a qQueue to be created 110
by the responsible gqueue manager. The authorisation control facility uses
the predefined definitions of the possible message queue authorities and
the mappings between these authorities and the standard READ, WRITE and
EXECUTE permissions to build 120 a set of authorisation files which

include these definitions.

The authorisation files are then stored 130 for future access by
the authorisation facility, the particular organisation of authorisation
file storage making use of a directory struciure with the Queue manager
identifier as its root and with individual resources within a resource
Cclass being identified firstly by the resource class name and

subseqguently by their resource name.

Authorizations for the application program which initiated Creation
of the resource are set 140 in accordance with the predefined default
permissions (for example, the application may be permitted to put
messages onto the message queue using the MQI command MQPUT) . Further
authorisations in relation to this queue which are required but which are
not established automatically are then set by a systems administrator
using the simple administration application referred to previously.

Testing Authorizations

When a subject requests access to a particular resource, the
subject’s authorization is tested by system level function calls (see
below). This enables an application to discover whether a specific
subject has a particular class of access to a given file.

IBM's AIX operating system and many other open systems operating
systems provide standard methods for allowing applications to test the
access rights which users have against files. The most common mechanisms
allow the user associated with the currently executing program to have
their access rights checked. The standard function provided is called
access (), this being defined for the most common open systems standards
(including X/Open XPG standards, POSIX and UNIX System V Interface

definition).

Using the access() function, code running in an application can
test the kind of access required to various files. For example, using the
SNA link example from above, if a systems management application needs to

2301912A__1 >

10

15

2D

25

30

35

BNSDOCID: <GB,

UK9-95-026 24

check whether the user running it had authority to change the link
attributes for HOST1, it could use the access() function to test whether
the user had READ and WRITE authority to the file ’
..../SNAlink/HOST1/attributes.

when a program needs to test the access which an arbitrary user
(i.e. a user other than the user of the current process) has to a given
file, an additional test method is sometimes regquired, as the open
operating systems do not provide a standard function for this. Arbitrary
testing is required, for example, when a serber is doing work on behalf
of another user. Servers usually run with more privilege than the users
for whom they are working. The server makes the relevant checks to see if
the user is authorised to perform the requested action. It prevents
unauthorised access, despite the fact that it itself is running with

enough authority to perform the action.

Although there are no really standard open systems functions for
performing the arbitrary user test, all ¢of the reguired information
exists in the authorisation files. On operating systems which do not
provide functions for checking arbitrary users, the following scheme is

used:

*» Access the permission information on the relevant authorisation files

using the standard stat() function.

» Extract the following information from the resulting data about the
file:

The id of the user who owns the file

The group id associated with the file

The permission bits assocciated with the file

* Using this information, together with the user and group id's of the
user whose access is to be tested, run the following algorithm to yield
the access rights:

set the resulting access rights to the "other user" permissions
returned by the stat() function:; and

if the user being tested has the same group id as the authorisation
file, logically OR the resulting access rights with the group permissions
returned by stat(); and

2301912A__|_>

10

15

20

25

30

35

40

NSDOCID: <GB

UK9-95-026 25

if the user being tested has the same user id as the authorisation

file, logically OR the resulting access rights with the user permissions

returned by stat().

The resulting access rights consist of a three bit filed with the

following meanings:

Bit 0 (most significant): The user has READ authority to the
authorisation file.
Bit 1: The user has WRITE authoritv to the

authorisation file.

Bit 2 (least significant): The user has EXECUTE authority to the

authorisation file.

As noted previously, users may be granted authorisations directly,
as owners of authorisation files, because of the groups to which they
belong, or as a result of public authorisation granted to all users. All
of these methods are supported by the test method described above.

Exploiting Access Control Lists

The present invention is equally applicable to those open Ssystem
platforms which support Access Control Lists (ACL‘s) - for example IEBM's
AIX operating system. ACL’'s allow READ, WRITE and EXECUTE permissions to
be specified for a file, but give more flexibility in the manner in which
it is assigned. For example, whereas access to a file can be defined for
only one group of users without an ACL, access for any number of groups
can be specified when an ACL is available. The only difference when ACL’'s
are employed is in the system function calls used to manage the
authorization files. The checks performed on file access are unchanged.

While a particular embodiment of the invention has been described
in detail, it will be appreciated by a person skilled in the art that
other implementations and modifications are within the scope of the
Present invention. Significant examples of such modifications have
already been mentioned, such as the invention being implemented using a
different set of resource aspects to those described in detail herein and
the defined authorities or mappings being varied to suit different

security requirements. As mentioned earlier, a plurality of authorization

2301912A__|_>

10

15

20

25

30

35

40

BNSDOCID: <GB

UK9-95-026 26

files may be used for each different resource aspect or less than one
file per aspect may be used depending on the particular authorisation

scheme which is required to provide satisfactory security.

In the specific embodiment of the invention which has been
described in detail, authorisation files are stored with the resources to
which they apply. An alternative approach stores all authorisation files
together, separately from the rescurce files. In an embodiment of the
invention which uses this central storage approach, the following naming

convention is used for the directory tree:
<auth_root>/<product_name>/<resource_class>/<resource_name>

where <auth_root> is the name of a directory suitable for all
authorisation information; <product_name> is a unigque name distinguishing
files for this product from others; and <resource_class> and
<resource_name> have the same meanings as given previously. Given this
structure, one embodiment of the invention has the following files

associated with the SNA link example:

/var/<auth_root>/SNA/SNAlink /HOST1/data
/var/<auth_root>/SNA/SNAlink /HOST1l/attributes
/var/<auth_root>/SNA/SNAlink/HOST1/security.

Once again, this arrangement is suitable for operating systems such
as IBM's AIX operating system which use the /var filesystem to hold data
files related to installed products.

Each of the naming conventions described (for either centralised
storing of authorisation files or storing with the resources to which
they apply) has its advantages. Storing security information with the
resources makes maintenance somewhat simpler. To ensure that no
information is lost when backups of resource files are taken, backups of
the authorisation files also need to be made. This is marginally more
difficult to achieve when authorisation files are held separately from
the resources. However, collecting the authorisation files together may
allow them all to be kept on physical data storage (disks) with
performance or security characteristics particularly appropriate for that
kind of use. The choice between the two approaches is a pragmatic one as

the invention supports either, and a variety of other approaches.

2301912A__|_>

UK9-55-026 27

The embodiment of the present invention which is described in
detail above includes a restriction on which subject ID’s may own
authorization files to prevent execute authority for authorization files
presenting a security exposure. An alternative solution to this

S restriction rule is for the described mapping of operating system
permissions to resource authorities to be modified to avoid use of the

EXECUTE permission at all.

NSDOCID: <GB 2301912A__I_>

10

15

20

25

30

35

40

BNSDOCID: <GB

UK9-95-026 28
CLATIMS

1. A method of implementing resource access authorization control for
computer resource security for operating systems in which a set of
operating system permissions are defined for use in the authorization of
subjects to perform operations in.relation to specific resources, the

method comprising:

creating (120) a set of files including a set of definitions of
correspondence between the defined operating system permissions and
specified resource authorities for each of a plurality of different

aspects of a resource;

storing (130) said created files for association with a resource to

be protected:; and

setting (140) subjects‘ authorizations in relation to said resource
in terms of the defined operating system permissions, thereby defining
the authorities which said subjects have in relation to the different

resource aspects.
2. A method according to claim 1, including:

responsive to a subject requesting performance of an operation in
relation to a protected resource, comparing the operating system
permissions of the subject with said set of definitions of correspondence
within the created files to determine whether the subject is authorised

to perform the operation in relation to the protected resource; and

permitting the operation to be performed if the subject is

authorised and rejecting the reguest if the subject is not authorised.

3. A method according to claim 1 or claim 2, for use with operating
system software in which operating system files are organised in
directories and for which both file permissions and directory permissions
are defined, wherein operating system file permissions are mapped to
resource” authorities by the definitions of correspondence within said
created files and operating system directory permissions are used to

protect said created files.

2301912A__1_>

10

15

20

25

30

35

40

NSDOCID: <GB

URS-95-026 29

4. A method according to claim 3, for use with operating system
software in which the defined directory permissions are read, write, and
éxecute permissions, wherein said step of setting subjects*
authorizations includes the step of giving subjects execute permission to
the directories which contain said created files but wherein read and

write permissions to said directories are not given.

5. A method according to any one of the preceding claims, wherein a
single created file is used to represent the resource authorities for

-

each resource aspect.

6. A method according to any one of the preceding claims, wherein said
step of creating files is performed automatically when a resource is
created, using a predefined set of said definitions of correspondence.

7. A method according to any one of the preceding claims, wherein a
subject which creates a resource has default authorisations automatically
assigned to it and/or to its subject group when the resource is Created.

8. A method according to any one of the preceding claims, wherein the
resource aspects for which resource authorities are specified are the
resource class, resource attributes, resource data and resource security.

9. A method of implementing resource access authorization control in a

computer system, the method comprising:

for computer resources which are to be protected, identifying a set
of resource aspects, particular instances of which are characteristic of

a particular computer resource:

defining resource authorities which subjects may have for each of
said resource aspects, and storing said authorities in association with

said resources; and

defining subject authorizations for resource access in accordance
with said defined resource authorities for said resource aspects, such
that the subject authorizations are defined at the level of granularity

of resource aspects.

10. A computer resource access authorization control facility (80) for

use with operating system software (30} having security facilities

2301912A__| >

10

i5

20

25

30

35

40

BNSDOCID: <GB

UK9-95-026 30

including a set of definitions of operating system permissions for use in

- the authorization of subjects of system resources to perform operations

in relation to said resources, the control facility including:

means for creating (120) a set of files including a set of
definitions of correspondence between said operating system permissions
and specified resource authorities for each of a plurality of different

aspects of a resource;

means for storing (130) said created files in association with a

resource to be protected; and

means for setting (140) subjects’ authorizations in relation to
specific resources using said operating system permissions, thereby to
set the authorities which said subjects have in relation to the different

resource aspects.
11. An authorization control facility according to claim 10, including:

means, responsive to a subject requirement f£or an operation to be
performed, for comparing the subject’s operating system permissions with
the set of definitions of correspondence within the created files,
thereby to determine whether the subject is authorised to perform the

operation.

12. An authorization control facility according to claim 10 or claim
11, implemented as an installable component of an application-program-

supporting software product.

13. An authorization control facility according to any one of claims 10
to 12, wherein the set of definitions of correspondence between said
operating system permissions and specified resource authorities are
predefined within the control facility for a plurality of different
resource types, said control facility being adapted to create said set of

files for a resource automatically when said resource is created.

14. An authorization control facility.according to any one of claims 10
to 13, which is adapted to automatically assign default authorizations in
relation to a resource to a subject and/or to the subject group when the

subject creates the resource.

2301912A__|_>

10

15

20

25

30

35

INSDOCID: <GB

UK9-95-026 31

15. A computer system having operating system software installed
therein, which operating system software‘’s security provision includes a
set of definitions of operating system permissions for use in the
authorization of subjects of system resources to perform operations in

relation to said resources, the system including:

means for creating a set of files including 2 set of definitions of
correspondence between said operating system permissions and specified
resource authorities for each of a plurality of different aspects of a

resource;

means for storing said created files in association with a resource

to be protected;

means for setting subjects’ authorizations in relation to specific
resources using said operating system permissions, thereby to set the
authorities which said subjects have in relation to the different

resource aspects:; and

means, responsive to a subject reguiring an operation to be
performed, for comparing the subject’s operating system permissions with
the set of definitions of correspondence within the created files,
thereby to determine whether the subject is authorised to perform the

operation.
16. A computer system including:

computer resource access authorisation control means defining, for
computer resources for which access authorisation control is required,
permissions which subjects may be given to perform operations in relation
to said resources, said means for defining being adapted to define
permissions for each of a plurality of different aspects of said
resources, particular instances of said resource aspects being

characteristic of a particular computer resource.

2301912A__I_>

Ofhce Sk
R S R I L T Es
Application No: GB 9511730.5 Examiner: B.G.Westemn
Claims searched: 1-16 Date of search: 16 August 1995
Patents Act 1977

Search Report under Section 17

Databases searched:

UK Patent Office collections, including GB, EP, WO & US patent specifications, in:

UK CI1 (Ed.N): G4A AAP
Int Cl (Ed.6): GO6F 1/00, 12/14
Other:

Documents considered to be relevant:

Category| Identity of document and relevant passage Relevant
to claims
X GB-2242295-A ICL See whole document 1,2,5,9,10
11,15,16
A US-5265221-A MILLER See whole document -
A | US-4621321-A BOEBERT etal See whole document -
X Document indicating lack of novelty or inventive siep A Document indicating technological background and/or staie of the an.
Y Document indicating lack of inventive step if combined P Document published on or afier the declared priority date but before
with one or more other documents of same category. the filing date of this invention.
E Patent document published on or after, but with priority date earlicr
& Member of the same patemt family than, the filing date of this application.

BNSDOCID: <GB

An Executive Agency of the Department of Trade and Industry

2301912A__ | >

THIS PAGE BLANK @spTo0)

	2007-03-05 Foreign Reference

